M1.(a) Crude oil OR petroleum
Not petrol.

Fractional distillation / fractionation
Not distillation alone.
(b) $\quad \mathrm{C}_{12} \mathrm{H}_{26}+12.5 \mathrm{O}_{2} \longrightarrow 12 \mathrm{CO}+13 \mathrm{H}_{2} \mathrm{O}$

Allow balanced equations that produce CO_{2} in addition to CO.
Accept multiples.
(c) (i) M1 Nitrogen and oxygen (from air) react / combine / allow a correct equation

If nitrogen from petrol / paraffin / impurities CE = $0 / 2$.

M2 at high temperatures
Allow temperatures above $1000{ }^{\circ} \mathrm{C}$ or spark.
Not just heat or hot.
M2 dependent on M1.
But allow 1 mark for nitrogen and oxygen together at high temperatures.
(ii) $2 \mathrm{NO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}$

Allow multiples.
(iii) $4 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \longrightarrow 4 \mathrm{HNO}_{3}$

Allow multiples.
(d) (i) $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$

Allow $C_{x} H_{2 x+2}$
CnH2n+2
Allow CxH2x+2
(ii) $\mathrm{C}_{12} \mathrm{H}_{26} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{C}_{6} \mathrm{H}_{12}$ Only.
$\mathrm{C}_{3} \mathrm{H}_{7}$
Only.

Zeolite / aluminosilicate(s)
Ignore aluminium oxide.
(iii) Larger molecule / longer carbon chain / more electrons / larger surface area

More / stronger van der Waals' forces between molecules
 Allow dispersion forces / London forces / temporary induced dipole-dipole forces between molecules.
 If breaking bonds, $C E=0 / 2$.

(e) 2,2,3,3,4,4-hexamethylhexane

Only.
Ignore punctuation.

Chain
Ignore branch(ed).
(f) Cl_{2}

> Only.
$\mathrm{Cl}-\mathrm{Cl}$
Not CL_{2} or Cl 2 or CL 2 or Cl^{2} or CL^{2}. Ignore Chlorine.

M2.(a) Covalent
If not covalent $C E=0 / 2$
If dative covalent $C E=0 / 2$
If blank mark on
Ignore polar
If number of pairs of electrons specified, must be 3

Shared pair(s) of electrons / one electron from Br and one electron from F Not 2 electrons from 1 atom
Not shared pair between ions/molecules
(b) (i)

or

BrF_{3} should have 3 bp and 2 lp and correct atoms for the mark
Penalise FI
BrF_{3} if trigonal planar shown $=120^{\circ}$
\quad Allow $84-90^{\circ}$ or 120° and ignore 180°
or if T shape shown $84-90^{\circ}$
Irrespective of shape drawn
(ii)

BrF_{4}^{-}should have 4 bp and 2 lp and all atoms for the mark(ignore sign)
Allow FI
$\mathrm{BrF}_{4}^{-} 90^{\circ}$
Only
Ignore 180°
1
(c) lonic or (forces of) attraction between ions / bonds between ions

If molecules, $I M F$, metallic, $C E=0$
If covalent bonds mentioned, $0 / 3$, unless specified within the BrF_{4}^{-}ion and not broken
Ignore atoms

Strong (electrostatic) attraction / strong bonds / lots of energy needed to break bonds

Between K^{+}and BrF_{4}^{-}ions/oppositely charged ions / + and - ions
If ions mentioned they must be correct
Strong bonds between + and - ions $=3 / 3$ 1
(d) (i) Hydrogen bonds/hydrogen bonding/H bonds/H bonding Not just hydrogen
(ii)

> One mark for 4 partial charges
> One mark for 6 lone pairs
> One mark for H bond from the lone pair to the $\mathrm{H} \delta+$
> Allow FI
> If more than 2 molecules are shown they must all be correct. Treat any errors as contradictions within each marking point.
> $C E=0 / 3$ if incorrect molecules shown.
(e) vdw / van der Waals forces between molecules

QoL
Not vdw between HF molecules, $C E=0 / 2$
$v d w$ between atoms, $C E=0 / 2$
If covalent, ionic, metallic, $C E=0 / 2$

IMF are weak / need little energy to break IMF / easy to overcome IMF 1

M3.(a) Hydrogen bond(ing)
Allow H bonding.
Penalise mention of any other type of bond.
(b) (i) Ammonia is a nucleophile Allow ammonia has a lone pair.

Benzene repels nucleophiles
Allow (benzene) attracts / reacts with electrophiles.
OR benzene repels electron rich species or lone pairs.
OR C-Cl bond is short / strong / weakly polar.
(ii) $\mathrm{H}_{2} / \mathrm{Ni} O R \mathrm{H}_{2} / \mathrm{Pt}$ OR $\mathrm{Sn} / \mathrm{HCl}$ OR Fe / HCl

Ignore dil / conc of HCl .
Ignore the term „catalyst".
Allow $\mathrm{H}_{2} \mathrm{SO}_{4}$ with Sn and Fe but not conc.
Ignore NaOH following correct answer.
Not NaBH_{4} nor LiAlH_{4}.
(iii) conc HNO_{3}
conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
If either or both conc missed can score 1 for both acids.
$\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}$
OR using two equations
$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}+\mathrm{HSO}_{4}^{-}$
$\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}{ }^{+}$
Allow 1:1 equation.
$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-}$.
(iv) Electrophilic substitution

- Ignore position or absence of Cl in M1 but must be in correct position for M2.
- M1 arrow from within hexagon to N or + on N .
- Allow NO_{2}^{+}in mechanism.
- \quad Bond to NO_{2} must be to N for structure mark M2.
- Gap in horseshoe must be centered around correct carbon (C1).
- $\quad+$ in intermediate not too close to C1 (allow on or "below" a line from C2 to C6).
- M3 arrow into hexagon unless Kekule.
- Allow M3 arrow independent of M2 structure.
- Ignore base removing H in M3.
- \quad + on H in intermediate loses M2 not M3.

M4.

Need to see 3 P-H bonds and one lone pair (ignore shape).
(b) Coordinate / dative

If not coordinate / dative then chemical error $C E=0$ unless blank or covalent then M1 = 0 and mark on.

Pair of electrons on $\mathrm{P}\left(\mathrm{H}_{3}\right)$ donated (to $\mathrm{H}+$)

Do not allow a generic description of a coordinate bond.
(c) $109.5^{\circ} / 1091 / 2 / 109^{\circ} 28 \square$

Allow answers in range between 109° to 109.5°
(d) Difference in electronegativity between P and H is too small Allow P not very electronegative / P not as electronegative as N, O and F / P not electronegative enough / P not one of the 3 most electronegative elements.
Do not allow phosphine is not very electronegative.

M5.(a) Hydrogen bonding / hydrogen bonds / H-bonding / H-Bonds Not just hydrogen.
(b)

One mark for minimum of 4 correct partial charges shown on the $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$
One mark for the 3 lone pairs.
One mark for H bond from the lone pair on O or N to the $\mathrm{H}^{\delta+}$

OR

The N-H-O should be linear but can accept if the lone pair on O or N hydrogen bonded to the H
If wrong molecules or wrong formula, $C E=0 / 3$
(c) (Phosphine) does not form hydrogen bonds (with water)

